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The purpose of this paper is to show how the search algorithm, known as par-

ticle swarm optimization performs. Here, particle swarm optimization ks applied

to structural design problems, but the method.has a much wider range of possi-

ble applications. The paper's new contributions are improvements to the particle

swarm optimization algorithm and conclusions and recommendations as to the

utility of the algorithm. Results of numerical experiments for both continuous

and discrete applications are presented in the paper. The results indicate that the

particle swarm optimization algorithm does locate the constrained minimum de-

sign in continuous applications with very good precision, albeit at a much higher

computational cost than that of a typical gradient based optimizer. However, the

true potential of particle swarm optimization is primarily in applications with

discrete and/or discontinuous functions and variables. Additionally, particle

swarm optimization has the potential of e3_icient computation with very large

numbers of concurrently operating processors.

Introduction

'OST general-imrpose ol)timization software.used in industrial applications makes use of

gradient-based algorithms, mainly due to their com-

putational efficiency-. However, in recent 5"ears non-

gradient based, probabilistie search algorithms have

attracted nmch attention froln the research eOll]nlll-

nity. These algorithlns generally mimic some natu-

ral lflmlmmena, for examl)le genetic algorithms and

sinmlated annealing. Genetic algorithms model the

evolution of a species, based on Darwin's principle

of survival of the fittest, 1 while simulated anneal-

ing is based on statistical mechanics and models the

equilibrium of large numbers of atoms during an an-

nealing process3

Although these probabilistic search algorithms

generally require many more function evaluations to

find an optimum solution, as colnpared to gradient-

based algorithms, they do provide several advan-
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t.ages. These algorithms are generally easy to pro-

gram, can efficiently make use of large nmnbers of

processors, do not require continuity in the problem

definition, and generally are better suited fiw find-

ing a global, or near global, solution. In pm'tieular

these algorithms are ideally suited for solving dis-

crete and/or combinatorial type optinlization prob-

lenls.

In this paper, a fairly recent type of probabilistic

search algorithm, called PartMe Swarm Ol_tilniza-

tion (PSO), is investigated. The PSO algorithm is

based on a simplified social model that is closely

tied to swarming theory. Tit(' Mgorithln was first in-

troduced by Kennedy and Eberhart. 3,`t A physical

analogy might be a swarm of bees searching for a

food source. In this analogy, each bee (reDrred to

as a partMe here) makes use of its own memory as

well as knowledge gained by the swarm as a whole

to find the best available food source.

Since it was originally introduced, the PSO al-

gorithm has been studied by a number of different

authors. 5-s These authors concentrated mostly on

nmlti-modaI mathematical problems that are impor-

tant in the initial research of an.,," optimization algo-

rithm, but are of little practical interest. Few ap-
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plications of the algoritlun to structural and multi-

disciplinary optimization are known. Two examples

are by Fourie and Groenwold who considered an ap-

plication to shape and size optimization 9 and an

application to topology optimization.m

The present paper focuses on ollhancelllents to

the basic PSO algorittnn. These include tile intro-

duction of a convergence criterion and dealing with

constrained and discrete problems. The enhanced

version of the algorithm is applied to the design of

a ten design variable cantilevered beam. Both con-

tinuous and integer/discrete versions of the problem
are st udied.

Basic Particle Swarm Optimization

Algorithm

Particle swarm optimization makes use of a ve-

locity vector to update the current position of each

partMe in the swarln. The position of each partMe

is updated based on the social behavior that a popu-

lation of individuals, the swarm in the case of PSO,

adapts to its environment by returning to t)romis -

ing regions that were previously discovered. ° The

process is stochastic ill nature and lnakes use of the

memory t)f each partMe as well as the knowledge

gained 1)y the swarm as a whole. The outline of a
basic PSO algorithm is as follows:

I. Start with an initial set of particles, tyI)ically
randomly distributed throughout the design

space

2. Calculate a velocity vector for each particle in
the swarm

3. Update the position of each partMe, using its

previous position and the updated velocity vec-
tor

4. Go to Step 2 and repeat until convergence

The scheme for updating tile l)osition of each pal'-

tMe is shown in (1)

x,.+l = x_. + vk+lAt (1)

where Xk+1_ represents the position of particle i at

iteration k + 1 and v_.+l represents ttw correspond-
ing velocity vector. A refit time step (At) is used
throughout the present work.

The scheme fin" updating the velocity vector of
each partMe del)(nl(ts on the i)articular PSO al-

gorithm under consideration. A commonly used

scheme was introduce(l by Shi and Eberliart, ° as

shown in (2)

v_.+l = w_t. + clrl At + c.2r2 At (2)

where rl and r2 are random munbers between 0

and 1. pi is the best position found by partMe i so

far and p_. is the best position in the swarm at time

k. Again, a unit time step (At) is used throughout

the present work. There are lhree problem depen-

dent parameters, the inertia of tile particle (w), and

two "trust" parameters c_ and c2. The inertia con-

trois the exploration properties of the algorithm,

with larger values facilitating a more global behavior

and smaller values facilitating a more local behavior.

Tile trust parameters indicate how much confidence

the current partMe has in itself (el) and how much

confidence it has ill tile swarm (c2).

Fourie and Groenwold 'q proposed a slight modifi-

cation to (2) for their structural design applications.

They proposed using the best position ill the swarm

to (late p-q. instead of the best position in the swarm

at iteration k, p_. Both approaches were investi-

gated and it was found that (2) works slightly better

for our applications. As a result (2) is used through-
out the present work.

Initial Swarm

The initial swarm is generally created such that

the 1)articles are randolnly distributed throughout

the design space, each with a randoin initial velocity

vector. In the present work, (,3) and (4) are made use

of to obtain the raltdom initial position alld velocity
vectors.

XTO = X,nin q- rl (Xmax Xmin) (3)

x,,.. + r_2(x,na_ - x..,_)
V 0 = (4)

In (3) and (4), rl and r2 are randoln numl)ers be-
tween 0 and 1, x,,m is the vector of lower t)ounds

and x,nax is the vector of upper bounds for tile de-
sign variables.

The influence of the ilfitial swarm distribution on

the effectiveness of the PSO algorithm is studied by

considering the initial particle distribution. Instead

of using a random distribution, a space filling design
of experiments (DOE) was used to distribute the

initial swarm in the design space. However, these

nmnerical experiments indicate that the initial dis-

tribution of the partMes (rand()m as COlnpare(l to

using the space filling DOE) is not important to

the overall performance of the PSO algorithm. The

reason being that the swarm changes dynamically

throughout the ol)timization process until an ol)ti-

nllll]l sohltion is reached. As a result, the precise

distribution of the initial swarm is not iInportant,

as long as it is fairly well distributed throughout the
design space. In the present work, all initial swarms

are randomly distributed.

2
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Problem Parameters

The basic PSO algoritlm_ has three i)rol)lent de-

pendent parameters, w, cl and c2. The literature a

proposes using cl = c_ = -,9 so that the mean of the

stochastic multipliers of (2) is equal to 1. Addition-

all3", Shi and Et)erhart 7 suggest using 0.8 < w < 1.4,

starting with larger w values (a more global search

behavior) that is d3mamically reduced (a more local

search l)ehavior) during the Ol)tilnizat.ion.

The present work showed that having each par-

tMe l)Ut slightly more trust in the swarm (larger

c2 value) and slightly less trust in itself (smaller cl

value) seems to work better for the structltral de-

sign problems considered here. Using cl = 1.5 and
ca = 2.5 works well in all example problems con-

sidered. Additionally, dynamically adjusting the w

vahle has several a(tvantages. First, it results in

faster convergence to the optimum solution and sec-

on(l, it makes the w parameter problem independent.

The scheme that dynamically adjusts the w vahte is
discussed tit more detail in the next. section.

Enhancements to the Basic Algorithm

The 1)asic PSO algorithm summarize(t in (1) and

(2) has been used in the literature t.o delnonstrate
the PSO algorithm on a numl)er of test l)roblems.

However, the goal here is to develop an implemen-

tation of the l)asic algorithln that woul(l be more

general in nature, applicable to a wide range of de-

sign prol)lems. To achieve this goal, a number of

enhancements to the basic algorithnl were investi-

gated. These enhancements are discussed in more
detail in this section.

Convergence Criterion

A rot)ust convergence criterion is important for

any general-l)urpose optin_izer. Most implementa-
tions of the PSO algorithln also implement some

convergence criterion. A convergence criterion is

necessary to avoid any additional function evalua-

tions after an oI)timum sohltkm is found. Ideally,

the convergence criterion should not have an.3" prol)-

lena specific parameters. The convergence criterion

used here is very basic. The maxilnunl change in the

objective function is monitored for a specified num-
ber of consecutive design iterations. If the lnaxinmm

change in the ol)jective flmction is less than a pre-
defined allowal)le change, convergence is assumed.

Problem Parameters

The ('1 = 1.5 aim c2 = 2.5 trust parameter val-

ues discussed earlier are used throughout the present

work. These parameters seem to be fairly prol)lem

independent, 1)at fin'ther study is required.

The inertia weight parameter It' is adjusted dy-

namically during the optimization, as suggested by
Shi and Eberhart, r with an example implementa-

tion by Fourie aim Groenwold. 9 Shi and gberhart 7

proposed linearly decreasing w during the fiirst part
of the ol)tilnization, while Fourie and Groenwold °

decreased the w value with a fraction if no improve-

lnent has been made for a predefined number of

consectttive design iterations.

In the present paper a different implementation

is proposed, based on the coefficient of variation

(COV) of the objective fllnction values. The goal

is to change the w vahle in a problem indel)endent

way, with no interaction fl'om the (lesigner. A start-

ing vahle of w = 1.4 is used to initially accommodate

a more global search and is dynamically reduced to
no less than n, = 0.35. Tit(' idea is to terminate

the PSO algorithm with a more local search. The u'

value is adjusted using (5)

w_,, = wolaf,,, (5)

where Wn_,,, is the newly adjusted w value, wold is

the previous w vahle and fu, is a constant l)etween

0 and 1. Snlaller .f,,, values would result in a more
dramatic reduction in w, that would in turn resnlt in

a more local search. In the present work .f,, = 0.975

is used throughout, resulting in a PSO algorithm

with a faMy glot)al search ('haracteristic.
The w vahle is not adjusted at each design iter-

ation. Instead the coefficient of val'iation (COt')

of the objective function vahles for a subset of best

l)artMes is monitored. If the COV falls below a

specified threshold value, it is assumed that the al-
gorithln is converging towar(ls an optinmm sohltion

and (5) is apl)lied. A general equation to calculate
the 67OI" for a set. of points is provided in (6)

StdDee
coy - (6)

5lca_

where StdDet' is the standar(t deviation and Mean

is the mean value for the set. of points, hi the present
work, a subset of the best 20_ of lmrticles fl'Oln the
swarm are monitored and a COt" threshold of 1.0 is

used.

Constrained Optimization

The basic PSO algorithm is defined for uncon-

strained problems only. Since most engineering

problems are constrained in one way or the other,

it is important to add the capability of dealing with

constrained optimization problems. It was decided
to deal with constraints by making use of a quadratic

exterior penalty function. This technique is often
used to deal with constrained problelns ill genetic
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algorithlns. Ill the current iml)lenmntation, the ob-

jective function is penalized as shown in (7) when
one or more of the constraints are violated.

rn

f(x) = f(x) + a_-_max[O, gi(x)] _ (7)
i=1

In (7), f(x) is the original objective function, o is

a large penalty parameter, g,(x) is the set of all

constraints (with violated constraints having values
larger than zero), aml f(x) is the new, penalized,

objective fimction. In the present work a penalty
l)arameter of (_ = l0 s is used.

Particles With Violated Constraints

\Vhen dealing with constrained optimization

problems, special attention to particles with violated

constraints needs to be paid. This issue was not ad-

dressed in the literature, thus a new enhancement to

the basic PSO algorithm is proposed here.

It is ln'eferal)le to restrict the velocity vector of a

violated particle to a usable, feasible direction e.g.,
Van(terplaats, _l a direction that would reduce the

objective function while pointing back to the feasi-

ble region of the design space. Unfi)rtunately, this

would require gradient ilfformation for each violated

partMe. Currently, one of the attractive features

of the PSO algorithm is that no gradient infi)rma-
tion is required and thus the concept of calculating

a usable, feasible direction is not viable.

Instead, a simple modification to (2) for partMes

with one or more violated constraints is proposed.

The modification can be explained by COltsidering

particle i which is aSsllnle(1 to have one or more

violated constraints at iteration k. By re-setting the

velocity vector of particle i at iteration k to zero, the

veh)city vector at iteration k + 1 is obtained as

vk+ 1 = elrl At + c2r2 At

Tile wqocity of partMe i at iteration k + 1 is thus

only influenced by the best point found so far for
the particle itself and the current best point in the

swarm. Ill most cases this new veh)city vector will

point back to a feasible region of the design space.
The result is to have the violated partMe move back

towards the feasible design space in the next design
iteration.

Discrete/Integer Design Variables

Unlike a genetic algorithm that is inherently a dis-

cretq algorithm, the PSO algorithm is inherently a

continuous algorithm. Although the PSO algorithm

is able to find ol)t imum solutions to continuous prob-

lems very accurately, tile associated computation

cost is high compared to gradient-based algorithms.
However, the true 1)oteutial of the PSO algoritlun is

in api)lications with discrete anti/or discontinuous
functi()ns an(1 variables. In other words, the algo-

rithm is expected to excel ill aI)l)lications where a

gradient-based algoritlml is not a viable alternative.

In this paper, two different modifications to the

basic PSO algorithm that allow the solution of l)rob-
lems with discrete variables arc considered. The first

approach is straight forwar(t. The position of each

partMe is nlo(lified to represent a discrete point, by

rounding each position coordinate to its closest dis-

crete value after applying (1).

The second approach is more elaborate. The po-

sition of each particle is modified to represent a dis-

crete point, by considering a set of candidate discrete

wdues about the new continuous point, obtained af-

ter applying (2). The candidate discrete points are

ol)tained I)y rounding each continuous position coor-

dinate to its closest upper and lower discrete values.

For a problem with l_Du(u' discrete design varial)les,
this process will result in _Dt'ar 2 candidate discrete

points. For a two dimensional, integer problen!, this
wouht produce four candidate discrete points, lo-

cated at the vertices of a two dimensional rectangle.
The discrete point to use as the new position for the

particle is selected fi'(nn the candidate set of discrete

points as the point with the shortest perpendicular

(list allce to the velocity vector. There are several ell-

hancemellts to this scheme, bKsed on the direction

of the velocity vector, that will substantially reduce

the nmnl)er of candidate discrete points, but a more

detail discussion is beyond the scope of this paper.

Reducing the number of candidate discrete points is

especially important for problems with larger num-

bers of design variables.

The more elaborate approach is expected to re-

sult in a more effMent integer/discrete algorithm. In
contrast to the expectation, nmnerical experiments

indicate ttmt there is no significant difference in the

i)erformance of the PSO algorithm when using the

first as compared to the second al)proach. Since

there is no advantage to using the more elaborate ap-

proach, this approach was discarded and the sintpler

rounding approach is used for all integer/discrete

l)roblelns presented in this paper.

Additional Randomness

To avoid premature convergence of the algorithm,
the literature mentions the possibh' use of a crazi-

ness operator s that adds randomness to the swarm.

The craziness operator acts similarly to the mutation

operator in genetic algorithms. However, there does
not seem to be concensus in the literature whether
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P

or not the craziness operator should be applied. _ i , |
After introducing the craziness operator, I(ennedy _ _ 3 • 4 .s

and Eherharta c°nchlde that this biSerat°r nlay n°t 1 ........ t ........ _ ........ I ........ _be necessary, while Fourie and Groenwold ° reintro-

duced tile craziness operator for their structural de- /3* /, --,'., -/: _I, /_--,;, - t°- "I" / --,t

sign prol)lems. It was thus decided to iml)lement a i" -- t "!t
craziness operator here and test it's effectiveness for .,.

our structural design problems.

Tile originally proposed craziness operator identi- [-----]7 ,-S0,000N. l / = 2Dxl0 _ Nero:

ties a small portion of randomly selected partMes at. _2 t=.saq ....• _ = 14,000 Non,:

each iteration for which tile velocity vector is ran- 14/,,-d
domly changed. Ill the present work, the craziness c_o_,io,,

operator is modified. The craziness operator used
here also identifies a small immber of parti('les at Fig. 1 Cantilevered beam example problem

each design iteration, but instead of changing the

velocity vector, both the position and the velocity integer/discrete case where all ten design varial)les
vector are changed. The position of the particles arc restricted to integer values only. For the sec-

are changed randonfly, while the velocity vector of end case, the height of each segment is allowed to

each modified partMe is reset to only' the second vary between 50 cm and 100 cm, while the width is

component of (2) as shown in (9). allowed to vary between 1 cm and 10 cm.

The bending stress is obtained from the well
i (pi _ x[:) (9) known bending stress equation shown in (10)

vk+ 1 = clrl At

My
Ill the present implenmntation, the partMes to rood- _ = -- (10)
if3.' are identified using the C'OI _ for the objective I

fimction values of all particles, at the end of each where _r represents the bending stress, M the ap-

design iteration. If the COl," falls below a prede- plied bending momenL I the moment of inertia and

fined threshold vahte, it is assumed that the swarm y is the vertical distance, measured from the nm|tral
is becoming too uniform. In this case. partMes that axis, where the stress is calculated. For this problem
are located far fi'om tile, center of the swarm are

M = P(L- .r) and I = _btl a, while the nlaxilntlnl
identified, using tile standard deviation of the po- stress value occurs at y = hi2. The height thus
sition coordinates of the particles. PartMes that are has a much larger influence on the bending stress,
located more than 2 standard deviations from the as compared to the width of the beam. It is reason-

center of the swarm are subjected t.o the craziness able to assume that the optimizer wouhl minimize
operator. In the present work, a COl _ threshold the weight by keeping the width constant and equal
value of 0.1 is used. to its lower hound, while changing the height of tile

Example Problem bemn. Ill this case, the theoretical solution for the
height is

To study the behavior of the PSO algorithm, a _/6P(L_ x) (11)
cantilevered beam example, sinmlar to that consid- h = V _b
ered by Vanderplaats 11 was chosen. A schematic

representation of the example problem, including where P is the applied tip load, x is the horizontal

material properties, are shown in Fig. 1. distance measured fi'om tile root of tile beam and
The beam is modeled using five segments of equal is the allowable stress limit.

length and the design problem is defined as mini- To verify the above assuml)t.ions, and to study
mizing the material volume of the beam, subject to how well a gradient-based optimizer would soh'e

maximum 1)emling stress constraints for each seg- this problem, it. was decided to model and solve

ment. The design variables are the height (h) and the continuous case using the GENESIS 1_-structural

width (b) of each segment, resulting in ten inde- analysis and optimization code. The theoretical op-

pendent design variables. Two cases arm considered, timmn results for a beam with uniform height and
The first is a continuous design problem where the width across the span, as well as the GENESIS and

height of each segment is allowed to vary between theoretical oI_timum results for a beam with five seg-
50 cm and 100 cm, while the width is allowed to ments are summarized ill Tal)le 1. The case with

vary between 0.5 cm and 10 am. The second is an uniform height and width was obtained by setting

5
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the width equal to its lower bound aM calculating

the height from (11) to have the maxinmnl stress at
the root equal to the allowable stress. The case with

constant height and width inay be considered as a
baseline fl'om wtfich the ol)tinfizer niakes improve-
ment.

Table 1 Comparison between continuous GEN-
ESIS and theoretical results

Parameter Baseline GENESIS Theory

Voluine (cm :_) 36683 27498 27438

b_ (cm) 0.5 0.5 0.5

b,_ (cm) 0.5 0.5 0.5

ba (cm) 0.5 0.5 0.5

b4 (cm) 0.5 0.5 0.5

b5 (era) 0.5 0.5 0.5

hi (cm) 146.73 146.73 146.39

h2 (cm) 146.73 131.16 130.93

ha (cm) 146.73 113.16 113.39

hq (cm) 146.73 92.78 92.5g
h5 (cm) 146.73 65.61 65.47

Table 1 verifies l)oth the assumptions that lead

to (11) and the GENESIS results. GENESIS solved

the l)roblem using 12 filfite element aimlyses. How-
ever, it shoukt be noted that GENESIS makes use

of advanced approxiination techniques to reduce the

required function evaluations for solving structural
ol)timization problems. A general l)urpose gradient-

based optimizer would most prot)ably require be-
tween 100 and 300 fi|nction evaluations to soh'e this

problenl.

Finding the theoretical ol)timunt for the inte-

ger/discrete case is a more daunting task. Iilstea(I,
we'll determine tight upper aim lower I)ounds for

the objective flnlction value. A lower bound nlay be

ol)taiile(t fl'om (11), using the lower bound values

of 1.0 fi)r all b,, thus producing an optiinum an-

swer with half the varial)les being integer�discrete

and the other half l)eing continuous. An upper

l)ound may be obtaine(I l)y considering three dis-

crete points, obtained by rounding the continuous

h, values obtained fl'(ml (11). The three points are

obtained by rounding all hi vahles up, rou|tding all

hi values down and rounding all h, values to their
closest integer value. It turns out that only tit(, Chlg_

where all h, values are ro|mde(l up produce a feasi-

ble design, thus providing an upper bound for the

integer/discrete optimmn solution.
The theoretical results for a beam with uniforin

height and width across the span, using the root
dimensions of the lower bound soh|tion, and the

upper and lower 1)ounds for the integer/discrete de-

sign probleIn are shown ill Table 2. The difference

in the objective function values of the calculate(l
upper and lower bounds is less than 1_ and Ta-

ble 2 thus provides tight ul)per and lower t)ounds

for the integer/discrete solution. Again, the beam

with constant height and width may be considered

as a baseline from whMl the optimization makes im-

provenlent.

Table 2 Upper and lower bound solutions for
the integer/discrete case

Parameter Baseline Lower Upper
Botmd Bound

Volume (cm! _) 51755 38803 39100

bi (cm) 1.0 1.0 1.0

b2 (era) 1.0 1.0 1.0

ba (cm) 1.0 1.0 1.0

b4 (cm) 1.0 1.0 1.0

be, (cm) 1.0 1.0 1.0

hj (era) 103.51 103.51 104
h2 (cm) 103.51 92.58 93

ha (era) 103.51 80.18 81

h4 (cm) 103.51 65.47 66

h_, (cm) 103.51 46.29 47

Results

The PSO algorithm was used to analyze the

t)eam examl)le prol)lem, employing the elementary

strength of materials approach described in the pre-

vious section. As discussed, two design problems

were considered, the first is a continuous problem

and the second an integer/discrete problem. For
each design problem, the influence of two enhance-

ments to the basic algorithm is considered. The
first is the proposed craziness operator. As men-

tioned previously, there seems to be disagreement in
the literature as to the usefiflness of the craziness

operator. The second is resetting the velocity vec-

tors of violated design points. Resetting the velocity
vectors is a new feature that has not been studied

previously. To fully investigate the influence of these

two enhancements, all possible combinations of us-

ing and not using the enhancements were consktered,

resulting in four possible coinbinations. The PSO al-

gorithm was first run for a fixed number of function
evaluations and then using the proposed convergence

criterion. In all ca, ses, a swarm size of 300 particles
was used.

Each run was repeated 50 times an(l tit(, best,

worst, mean and standard deviation of the best ob-

jective flnlction fl'om each of the 50 repetitions were

recorded. For the runs where the convergence crite-

rion was used, the best, worst, nlean and standard

rt

!
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deviation of tile number of function evaluations to

convergence for each of the 50 repetitions were also
recorded. For all runs the same PSO parameters

were used, as mnnmarized in Table 3. The w, cl

and c2 values were deternfined as discussed in previ-
ous sections of this paper. The number of particles

(swarm size) was selected as a tradeoff between cost

and reliability. Smaller swarm sizes required less
fnnction evaluations for convergence, lint decreased

the reliability of the algorithm. Larger swarm sizes

required more function evaluations for convergence,
but increased the reliability of the algorithm.

Table 3
lems

PSO parameters used in example prob-

Parameter Value

Number of partMes 300

Initial inertia weight, w 1.4

Trust parameter 1, cl 1.50

Trust parameter 2, c.) 2.50

Each run is identified by the combination of en-

hancements used during that run, as summarized

in Table 4. From Table 4, R would represent reset-

ting the vel<)cities of violated l)articles only, while
CR would represent using the craziness operator and

resetting the velocities of violated partMes.

Table 4 PSO enhancement summary

Option Defilfition

C Apply craziness operator
R Reset velocities of violated particles

Fixed Number of Function Evaluations

First, each of the four coml)inations was evaluated

using a fixed nmnber of design iterations equal to 50,

resulting in a total lmml)er ()f function evaluations

equal to 15000. The statistical results obtained fi'om

50 rel)etitions for each combination are smnmarized
in Table 5 for the contimlous design problem and in

Table 6 for the integer/discrete design problem.

Table 5 Objective function (material volume)
statistics for the continuous design problem

Option Mean StdDev Best \\\)rst

-- 41383 18548 27610 95547

g 31897 12247 27438 91809

C 43232 19866 30150 92208

CR 33534 15394 27439 110824

Table 6 Objective function (material volume)
statistics for the integer design problem

Option Mean StdDev Best Worst

-- 67380 20707 39900 112196

R 42822 10153 39100 89491

C 62562 17690 39100 107596

CR 42253 10234 39100 85086

By comparing the statistical data, especially the
mean and standard deviation values, fi'om Tables 5

and 6 it is clear that resetting the velocity vectors

()f the violated design points has a significant and

positive influence on the performance of the PSO

algorithln. In contrast, the craziness operator does
not appear to have a big influence. It is not (:lear if

combining the craziness operator and resetting the

velocity vectors of the violated design points results

in any additional improvements over just resetting

the velocity vectors without the craziness operator.

Finally, the standard deviation clearly shows that

the algorithm is more successfifl in solving the dis-

crete probleln (Tat)le (3) than the continuous l)rol)lem

(Table 5). This was expected, since the discrete
problem results in a smaller design space as com-

pared to the continuous problem.
For the case with a fixed number of function evalu-

ations, it is possible to compare the optimum results

ot)tained by the PSO algorithm against a randoln

search, using the same number of function valua-

tions. We performed a random search with 15000

analyses, again repeating the process 50 times, and
recorded the statistics for the best objective fimction

from each repetition. The results are summarized in
Table 7.

Table 7 Objective function (material volunae)
statistics for the continuous problem using a ran-
dom search

Mean StdDev Best \\_rst

176956 28349 117115 261619

\\'hen comparing the results from Tat)Ie 7 with
that fi'oln Table 5, it is (:lear that the random search

has a terrible perf()rmance as compared to the PSO

algorithm, using the same nmnl)er of fimction eval-
nations.

Convergence Criterion

Next the runs of Tal)les 5 and 6 are repeated,

using the proposed convergence criterion. For con-
vergence the objective fim(.tion is required not to

change more than 0.1_ in 10 consecutive design
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iterations. A maxinmm of 500 design iterations,

equivalent to 150000 analyses, was allowed for cases

where the algorithn] did not converge.

The statistical results for both the cost (number

of function evahmtions) and the objective function

values obtained from 50 repetitions are sunamartzed

in Table 8 for the continuous design problenL Ta-

ble 9 contains the corresponding results for the in-

teger/discrete design t)rot)lem.

The results are simular to that of Tables 5 and 6.

Resetting the velocity vectors of violated particles

has a big influence on the performance of the PSO

algorithm, while apI)lying the craziness operator has

a much smaller influence. It would appear that coln-

bining the two enhancements does have a positive
influence in that the number of fi,ncti<>n evaluations

are reduced whih' l)etter results (snmller mean and

standard deviation for the objective function values)

are obtaine<l. Again, the discrete problem is solved

more efficiently than the continuous prol)leln.

Note that 300 particles were used in all cases. If

one considers the mean (:()st when using both en-
hancements, an average of 49.24 design iterations is

required to solve the continuous problem and 32.62

to solve the integer/discrete problem. Within a de-

sign iteration, all analyses are independent of each

other and can be easily parallelized with lninilnal

inter-process commmfication. It is thus reasonabh,

to expect near perfect speedup within a design iter-

atkm, when adding more processors. In the extreme

case, using 300 processors shouhl allow the designer

to solve the ten design variable continuous problem
in the equivalent time of 49 analyses, while the inte-

ger/discrete case can be solved in the equivalent time

of Olfly 32 analyses. If more processors are available,

the number of particles considered can be increased

to the nulnber of available processors. Using more

partMes has the advantage of increasing the robust-

ness of the algorithm and reducing the number of

design iterations to convergence. The PSO algo-

rithm thus has tremendous potential of efficiently

computing with very large nulnbers of concurrently

operating processors.

The best continuous design l)oint found by the
PSO had an objective fimction of 27440 cm a, while

the best discrete solution had an objective function
value of 39100 cm 3, The best results found by the

PSO algoritlml are compared to the theoretical an-

swer for the corltinuous problem in Table 10.

Table 10 shows that the PSO algorithm fimnd a

very accurate optimmn solution fin" the continuous

design lm)blem as compared to the theoretical an-

swer. The best integer/discrete solution foun(l is

within the calculated upper and lower bounds sum-

Table 10 Comparison between PSO and theo-
retical results

Parameter Theoretical PSO

Continuous Contim_ous Discrete

Volume 27429 27438 39100

bl 0.5 0.5 1.0

b2 0.5 0.5 1.0

ba 0.5 0.5 1.0

bj 0.5 0.5 1.0

br, 0.5 0.5 1.0

h_ 146.27 146.39 104.0

h., la0.s5 130.93 93.0

ha 113.31 113.39 81.0

h4 92.54 92.58 66.0

h5 65.44 65.47 47.0

marized
s<)httion

Tal)le 2.

in Table 2. In fa('t tit(, best integer/discrete

fimnd is equal to the upper bound shown in

Concluding Remarks

The PSO algorithm was applied to both a contin-

uous and an integer/discrete structural design prob-

lem. It is shown that the PSO algorithm, which is

inherently a continuous algorithm, is capable of ac-

curately solving continuous design problems, all)eit

at a lnueh higher computati<)nal cost than gradient-

based optimizers.

The results show that as expected, the PSO algo-

rithm is better suited for integer/discrete aim dis-

contint|o||s prol)lems where llSe of a gradient-1)ased

ol)timizer may not be appropriate. In the present

paper, it is shown that the PSO algorithm is able

to solve an integer/discrete design problem more ac-

curately and using less fimction evaluations as con]-

pared to a similar continuous design problem.

In terms of algorithm enhancements, the newly

introduced idea of resetting the veh)city vectors of

violated design points has a siglfificant positive in-

fluence on the performance of the algorithm. The

craziness operator does not have a big influence.

However, it seems tlmt there might be a small ad-

vantage to combining the two enhancements as com-

pared to just using the idea of resetting the velocity
vectors.
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